

B. Sc. (Sem. V) (CBCS) Examination

June - 2023

C-503: Chemistry

(Physical and Analytical Chemistry) (2019)

Faculty Code: 003

Subject Code: 2015007

Time: $2\frac{1}{2}$ / Total Marks: 70

Ins	tructi	ons:	
	(1)	All questions are compulsory.	
	(2)	In all questions, B, C, D have internal options.	
	(3)	All questions carry equal marks (14 marks for each question)	
1	(a)	Answer the following questions:	4
		(1) All natural processes are irreversible. True or False.	
		(2) Isochoric process takes place at constant	
		(3) Define: Spontaneous process.	
		(4) $\Delta S_{\text{sys}} + \Delta S_{\text{surr}} = 0$ for process.	
	(b)	Answer any one of the following:	2
		(1) Define entropy in short.	

- (2) Differentiate between reversible process and spontaneous process. Answer any one of the following:
 - (1) Write any two statements of 2nd law of thermodynamics. (2) Calculate the amount of heat absorbed by the reversible
 - cycle working between 358 K and 280 K. The maximum work obtained is 892 Joule.
- Answer any one of the following: (d) Derive the equation of entropy change for a mxiture of Ideal gas.
 - (2) Discuss Carnot's cycle with its operations.

3

5

2	(a)	Answer the following questions:	4
		(1) An electrochemical cell converts energy to	
		energy.	
		(2) Define Electrolyte.	
		(3) Maximum degree of freedom possible for three	
		component system is	
		(4) Define Quintuple point.	
	(b)	Answer any one of the following:	2
		(1) Write a note on Half cell.	
		(2) Differentiate reversible and irreversible cell with	
		example.	
	(c)	Answer any one of the following:	3
		(1) Write the construction of saturated calomel electrode.	
		(2) Explain phase rule and terms involved in it.	
	(d)	Answer any one of the following:	5
		(1) Derive Nernst equation and give its applications.	
		(2) Explain phase diagram of three component system, which	
		form one pair of partially miscible liquids.	
3	(a)	Answer the following questions:	4
		(1) Give the Helmholtz equation for variation in work	
		function at constant volume.	
		(2) law gives relation between absorbed light	
		and thickness of medium.	
		(3) As the colour intensity of the solution increases,	
		absorbance value will .	
		(4) Define Work function $\overline{(A)}$.	
	(b)	Answer any one of the following:	2
	` ,	(1) Define Absorbance and Transmittance.	
		(2) Discuss the effect of pressure on the melting point of	
		ice.	
	(c)	Answer any one of the following:	3
		(1) Derive mathematical expression for Lambert-Beer's law.	
		(2) Explain law of mass action in short.	
	(d)	Answer any one of the following:	5
	. ,	(1) Explain derive Van't Hoff Isotherm equation.	
		(2) Discuss the spectrophotometric titration for :	
		(a) Deficiency of absorbance by titrant and reactant.	
		(b) Deficiency of absorbance by product.	

2

[Contd...

HAL-003-2015007]

4	(a)	Answer the following questions:	4
		(1) In Murexide, how many H ⁺ ions can be ionized?	
		(2) Which salt is used to prepare the standard solution of EDTA?	
		(3) Upon dilution, the value of specific conductance	
		(4) Write the unit of conductivity of a solution.	
	(b)	Answer any one of the following:	2
		(1) State the Velcher's rules for EDTA titration.	
		(2) Write the factors affecting conductance of solution.	•
	(c)	Answer any one of the following:	3
		(1) Explain Equivalent Conductance and Molar Conductance.(2) Write a short note on EBT indicator.	
	(d)	Answer any one of the following:	5
	(4)	(1) Discuss the use of Masking and Demasking agents used	
		in complexometric titrations.	
		(2) Discuss the neutralization conductometric titration curve	
		for:	
		(a) Strong acid against strong base.	
		(b) Mixture of strong acid and weak acid against	
		strong base.	
5	(a)	Answer the following questions:	4
5	(a)	Answer the following questions: (1) Define Iodimetry titration.	4
5	(a)		4
5	(a)	(1) Define Iodimetry titration.	4
5	(a)	(1) Define Iodimetry titration.(2) Give two examples of redox indicators.	4
5	(a)	 (1) Define Iodimetry titration. (2) Give two examples of redox indicators. (3) Phenolphthalein gives colour in basic solution. (4) Calculate Molarity of 2 litre solution containing 100 grams NaOH. 	4
5	(a) (b)	 (1) Define Iodimetry titration. (2) Give two examples of redox indicators. (3) Phenolphthalein gives colour in basic solution. (4) Calculate Molarity of 2 litre solution containing 100 grams NaOH. Answer any one of the following; 	2
5	` '	 (1) Define Iodimetry titration. (2) Give two examples of redox indicators. (3) Phenolphthalein gives colour in basic solution. (4) Calculate Molarity of 2 litre solution containing 100 grams NaOH. Answer any one of the following; (1) Explain the difference between end point and equivalent 	
5	` '	 (1) Define Iodimetry titration. (2) Give two examples of redox indicators. (3) Phenolphthalein gives colour in basic solution. (4) Calculate Molarity of 2 litre solution containing 100 grams NaOH. Answer any one of the following; (1) Explain the difference between end point and equivalent point. 	
5	` '	 (1) Define Iodimetry titration. (2) Give two examples of redox indicators. (3) Phenolphthalein gives colour in basic solution. (4) Calculate Molarity of 2 litre solution containing 100 grams NaOH. Answer any one of the following; (1) Explain the difference between end point and equivalent point. (2) How much litres of 0.2 M aqueous solution of Na₂CO₃ 	
5	` '	 (1) Define Iodimetry titration. (2) Give two examples of redox indicators. (3) Phenolphthalein gives colour in basic solution. (4) Calculate Molarity of 2 litre solution containing 100 grams NaOH. Answer any one of the following; (1) Explain the difference between end point and equivalent point. (2) How much litres of 0.2 M aqueous solution of Na₂CO₃ can be prepared from 212 grams of Na₂CO₃? 	
5	(b)	 (1) Define Iodimetry titration. (2) Give two examples of redox indicators. (3) Phenolphthalein gives colour in basic solution. (4) Calculate Molarity of 2 litre solution containing 100 grams NaOH. Answer any one of the following; (1) Explain the difference between end point and equivalent point. (2) How much litres of 0.2 M aqueous solution of Na₂CO₃ can be prepared from 212 grams of Na₂CO₃? (Na = 23, C = 12, O=16 gm/mole) 	2
5	` '	 (1) Define Iodimetry titration. (2) Give two examples of redox indicators. (3) Phenolphthalein gives colour in basic solution. (4) Calculate Molarity of 2 litre solution containing 100 grams NaOH. Answer any one of the following; (1) Explain the difference between end point and equivalent point. (2) How much litres of 0.2 M aqueous solution of Na₂CO₃ can be prepared from 212 grams of Na₂CO₃? (Na = 23, C = 12, O=16 gm/mole) Answer any one of the following: 	
5	(b)	 (1) Define Iodimetry titration. (2) Give two examples of redox indicators. (3) Phenolphthalein gives colour in basic solution. (4) Calculate Molarity of 2 litre solution containing 100 grams NaOH. Answer any one of the following; (1) Explain the difference between end point and equivalent point. (2) How much litres of 0.2 M aqueous solution of Na₂CO₃ can be prepared from 212 grams of Na₂CO₃? (Na = 23, C = 12, O=16 gm/mole) Answer any one of the following: (1) Explain the neutralization titration curve of weak acid 	2
5	(b)	 (1) Define Iodimetry titration. (2) Give two examples of redox indicators. (3) Phenolphthalein gives colour in basic solution. (4) Calculate Molarity of 2 litre solution containing 100 grams NaOH. Answer any one of the following; (1) Explain the difference between end point and equivalent point. (2) How much litres of 0.2 M aqueous solution of Na₂CO₃ can be prepared from 212 grams of Na₂CO₃? (Na = 23, C = 12, O=16 gm/mole) Answer any one of the following: 	2
5	(b)	 (1) Define Iodimetry titration. (2) Give two examples of redox indicators. (3) Phenolphthalein gives colour in basic solution. (4) Calculate Molarity of 2 litre solution containing 100 grams NaOH. Answer any one of the following; (1) Explain the difference between end point and equivalent point. (2) How much litres of 0.2 M aqueous solution of Na₂CO₃ can be prepared from 212 grams of Na₂CO₃? (Na = 23, C = 12, O=16 gm/mole) Answer any one of the following: (1) Explain the neutralization titration curve of weak acid against strong base. 	2
5	(b)	 (1) Define Iodimetry titration. (2) Give two examples of redox indicators. (3) Phenolphthalein gives colour in basic solution. (4) Calculate Molarity of 2 litre solution containing 100 grams NaOH. Answer any one of the following; (1) Explain the difference between end point and equivalent point. (2) How much litres of 0.2 M aqueous solution of Na₂CO₃ can be prepared from 212 grams of Na₂CO₃? (Na = 23, C = 12, O=16 gm/mole) Answer any one of the following: (1) Explain the neutralization titration curve of weak acid against strong base. (2) Explain primary and secondary standard. Answer any one of the following: (1) Explain Mohr's method for precipitation titration. 	2
5	(b)	 Define Iodimetry titration. Give two examples of redox indicators. Phenolphthalein gives colour in basic solution. Calculate Molarity of 2 litre solution containing 100 grams NaOH. Answer any one of the following; Explain the difference between end point and equivalent point. How much litres of 0.2 M aqueous solution of Na₂CO₃ can be prepared from 212 grams of Na₂CO₃? (Na = 23, C = 12, O=16 gm/mole) Answer any one of the following: Explain the neutralization titration curve of weak acid against strong base. Explain primary and secondary standard. Answer any one of the following: Explain Mohr's method for precipitation titration. Discuss Ostwald's Indicator principle for neutralization 	2
5	(b)	 (1) Define Iodimetry titration. (2) Give two examples of redox indicators. (3) Phenolphthalein gives colour in basic solution. (4) Calculate Molarity of 2 litre solution containing 100 grams NaOH. Answer any one of the following; (1) Explain the difference between end point and equivalent point. (2) How much litres of 0.2 M aqueous solution of Na₂CO₃ can be prepared from 212 grams of Na₂CO₃? (Na = 23, C = 12, O=16 gm/mole) Answer any one of the following: (1) Explain the neutralization titration curve of weak acid against strong base. (2) Explain primary and secondary standard. Answer any one of the following: (1) Explain Mohr's method for precipitation titration. 	2